Abstract

In this paper, we provide a thorough theoretical study on delivery guarantees, loop-free operation, and worst-case behavior of face and combined greedy-face routing. We show that under specific planar topology control schemes, recovery from a greedy routing failure is always possible without changing between any adjacent faces. Guaranteed delivery then follows from guaranteed recovery while traversing the very first face. In arbitrary planar graphs, however, a proper face selection mechanism is of importance since recovery from a greedy routing failure may require visiting a sequence of faces before greedy routing can be restarted again. We provide complete and formal proofs that several proposed face routing and combined greedy-face routing schemes guarantee message delivery in specific planar graph classes or even in arbitrary planar graphs. We also discuss the reasons why other methods fail to deliver a message or even end up in a loop. In addition, we investigate the behavior of face routing in arbitrary not necessarily planar networks and show, while delivery guarantees cannot be supported in such a general case, most face and combined greedy-face routing variants support at least loop-free operation. For those variants, we derive worst-case upper bounds on the number of forwarding steps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call