Abstract

Rota–Baxter algebras are important in probability, combinatorics, associative Yang–Baxter equation and splitting of algebras. This paper studies the formal deformations of Rota–Baxter algebra morphisms. As a consequence, we develop a cohomology theory of Rota–Baxter algebra morphisms to interpret the lower degree cohomology groups as formal deformations. Finally, we prove the cohomology comparison theorem of Rota–Baxter algebra morphisms, i.e. the cohomology of a morphism of Rota–Baxter algebras is isomorphic to the cohomology of an auxiliary Rota–Baxter algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.