Abstract

In our recent paper, we proved the polynomiality of a Poisson bracket for a class of infinite-dimensional Hamiltonian systems of partial differential equations (PDEs) associated to semi-simple Frobenius structures. In the conformal (homogeneous) case, these systems are exactly the hierarchies of Dubrovin and Zhang, and the bracket is the first Poisson structure of their hierarchy.Our approach was based on a very involved computation of a deformation formula for the bracket with respect to the Givental–Lee Lie algebra action. In this paper, we discuss the structure of that deformation formula. In particular, we give an alternative derivation using a deformation formula for the weak quasi-Miura transformation that relates our hierarchy of PDEs with its dispersionless limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.