Abstract
We provide a complete list of two- and three-component Poisson structures of hydrodynamic type with degenerate metric, and study their homogeneous deformations. In the non-degenerate case any such deformation is trivial, that is, can be obtained via Miura transformations. We demonstrate that in the degenerate case this class of deformations is non-trivial, and depends on a certain number of arbitrary functions. This shows that the second Poisson–Lichnerowicz cohomology group does not vanish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.