Abstract
For various applications, it is well-known that the deflated ICCG is an efficient method for solving linear systems with invertible coefficient matrix. We propose two equivalent variants of this deflated ICCG which can also solve linear systems with singular coefficient matrix, arising from discretization of the discontinuous Poisson equation with Neumann boundary conditions. It is demonstrated both theoretically and numerically that the resulting methods accelerate the convergence of the iterative process. Moreover, in practice the singular coefficient matrix has often been made invertible by modifying the last element, since this can be advantageous for the solver. However, the drawback is that the condition number becomes worse-conditioned. We show that this problem can completely be remedied by applying the deflation technique with just one deflation vector.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.