Abstract

Cities worldwide are rapidly adopting “smart” technologies, transforming urban life. Despite this trend, a universally accepted definition of “smart city” remains elusive. Past efforts to define it haven’t yielded a consensus, as evidenced by the numerous definitions in use. In this paper, we endeavored to create a new “compromise” definition that should resonate with most experts previously involved in defining this concept and aimed to validate one of the existing definitions. We reviewed 60 definitions of smart cities from industry, academia, and various relevant organizations, employing transformer architecture-based generative AI and semantic text analysis to reach this compromise. We proposed a semantic similarity measure as an evaluation technique, which could generally be used to compare different smart city definitions, assessing their uniqueness or resemblance. Our methodology employed generative AI to analyze various existing definitions of smart cities, generating a list of potential new composite definitions. Each of these new definitions was then tested against the pre-existing individual definitions we’ve gathered, using cosine similarity as our metric. This process identified smart city definitions with the highest average cosine similarity, semantically positioning them as the closest on average to all the 60 individual definitions selected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.