Abstract

We reconsider Taupin's (2001) Integrated Nonlinear Regression (INLR) estimator for a nonlinear regression with a mismeasured covariate. We find that if we restrict the distribution of the measurement error to the class of range-restricted distributions, then weak smoothness assumptions suffice to ensure sqrt(n) consistency of the estimator. The restriction to such distributions is innocuous, because it does not affect the fit to the data. Our results show that deconvolution can be used in a nonparametric first step without imposing restrictive smoothness assumptions on the parametric model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.