Abstract

Let $F$ be a field and let $n$ be a natural number greater than $1$. The aim of this paper is to prove that if $F$ contains at least three elements, then every matrix in the special linear group $\mathrm{SL}_n(F)$ is a product of at most two commutators of involutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.