Abstract
The initial boundary value problem for a system of viscoelastic wave equations of Kirchhoff type with the nonlinear damping and the source terms in a bounded domain is considered. We prove that, under suitable conditions on the nonlinearity of the damping and the source terms and certain initial data in the stable set and for a wider class of relaxation functions, the decay estimates of the energy function is exponential or polynomial depending on the exponents of the damping terms in both equations by using Nakao’s method. Conversely, for certain initial data in the unstable set, we obtain the blow-up of solutions in finite time when the initial energy is nonnegative. This improves earlier results in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.