Abstract

This paper studies the rate-distortion performance of symmetric scalar quantizers to extend previous work published by the first author. We first provide a theoretical analysis of dead-zone plus uniform threshold quantization (DZ+UTQ) for nearly-uniform-reconstruction quantization (NURQ). The quantization performance is particularly investigated for Generalized Gaussian (such as Laplacian and Gaussian) sources using the squared-error distortion measure. According to the analysis, we note that the rate-distortion optimized quantizer is DZ+UTQ with NURQ for Laplacian sources, and is very similar to a DZ+UTQ for a uniform reconstruction quantizer (URQ). We further provide theoretical analysis of rate-distortion constrained DZ+UTQ with NURQ and URQ to cover other Generalized Gaussian sources and give the rate-distortion performance comparison theoretically between NURQ and URQ for DZ+UTQ. We conclude that a URQ is a near-optimal reconstruction rule for many sources, and that a DZ+UTQ classification rule is an effective classifier for it. URQ can be considered as a sub-optimal case of NURQ; the advantage of URQ being its simpler reconstruction rule. Based on the theoretical findings, a new DZ+UTQ quantization rounding technique for URQ is developed and integrated into recent H.264/AVC reference software to improve its encoding performance. Up to 1.0 dB performance improvement is observed, particularly in the very high bit rate range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call