Abstract

Easily calculated truncation-error estimates are given which permit efficient automatic error control in computations based on de Vogelaere’s method. An upper bound for the local truncation error is established, the interval of absolute stability is found to be [ − 2 , 0 ] [ - 2,0] , and it is shown that the global truncation error is of order h 4 {h^4} where h is the steplength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.