Abstract

The standard method of separation of variables in PDEs called the Stäckel–Robertson–Eisenhart (SRE) approach originated in the papers by Robertson (1928 Math. Ann. 98 749–52) and Eisenhart (1934 Ann. Math. 35 284–305) on separability of variables in the Schrödinger equation defined on a pseudo-Riemannian space equipped with orthogonal coordinates, which in turn were based on the purely classical mechanics results by Paul Stäckel (1891, Habilitation Thesis, Halle). These still fundamental results have been further extended in diverse directions by e.g. Havas (1975 J. Math. Phys. 16 1461–8; J. Math. Phys. 16 2476–89) or Koornwinder (1980 Lecture Notes in Mathematics 810 (Berlin: Springer) pp 240–63). The involved separability is always ordinary (factor R = 1) and regular (maximum number of independent parameters in separation equations). A different approach to separation of variables was initiated by Gaston Darboux (1878 Ann. Sci. E.N.S. 7 275–348) which has been almost completely forgotten in today’s research on the subject. Darboux’s paper was devoted to the so-called R-separability of variables in the standard Laplace equation. At the outset he did not make any specific assumption about the separation equations (this is in sharp contrast to the SRE approach). After impressive calculations Darboux obtained a complete solution of the problem. He found not only eleven cases of ordinary separability Eisenhart (1934 Ann. Math. 35 284–305) but also Darboux–Moutard–cyclidic metrics (Bôcher 1894 Ueber die Reihenentwickelungen der Potentialtheorie (Leipzig: Teubner)) and non-regularly separable Dupin-cyclidic metrics as well. In our previous paper Darboux’s approach was extended to the case of the stationary Schrödinger equation on Riemannian spaces admitting orthogonal coordinates. In particular the class of isothermic metrics was defined (isothermicity of the metric is a necessary condition for its R-separability). An important sub-class of isothermic metrics are binary metrics. In this paper we solve the following problem: to classify all conformally flat (of arbitrary signature) 4-dimensional binary metrics. Among them there are 1) those that are separable in the sense of SRE metrics Kalnins–Miller (1978 Trans. Am. Math. Soc. 244 241–61; 1982 J. Phys. A: Math. Gen. 15 2699–709; 1984 Adv. Math. 51 91–106; 1983 SIAM J. Math. Anal. 14 126–37) and 2) new examples of non-Stäckel R-separability in 4 dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call