Abstract
This work reviews the classical Darboux theorem for symplectic, presymplectic, and cosymplectic manifolds (which are used to describe mechanical systems), as well as certain cases of multisymplectic manifolds, while extends the Darboux theorem in new ways to k-symplectic and k-cosymplectic manifolds (all these structures appear in the geometric formulation of first-order classical field theories). Moreover, we discuss the existence of Darboux theorems for classes of precosymplectic, k-presymplectic, k-precosymplectic, and premultisymplectic manifolds, which are the geometrical structures underlying some kinds of singular field theories, i.e. with locally non-invertible Legendre maps. Approaches to Darboux theorems based on flat connections associated with geometric structures are given, while new results on polarisations for (k-)(pre)(co)symplectic structures arise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.