Abstract

A graph is said to be cyclically k-edge-connected, if at least k edges must be removed to disconnect it into two components, each containing a cycle. Such a set of k edges is called a cyclic-k-edge cutset and it is called a trivial cyclic-k-edge cutset if at least one of the resulting two components induces a single k-cycle. It is known that fullerenes, that is, 3-connected cubic planar graphs all of whose faces are pentagons and hexagons, are cyclically 5-edge-connected. In this article it is shown that a fullerene F containing a nontrivial cyclic-5-edge cutset admits two antipodal pentacaps, that is, two antipodal pentagonal faces whose neighboring faces are also pentagonal. Moreover, it is shown that F has a Hamilton cycle, and as a consequence at least 15 · 2 n / 20 - 1 / 2 perfect matchings, where n is the order of F.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.