Abstract
AbstractThe notion of descent set, for permutations as well as for standard Young tableaux (SYT), is classical. Cellini introduced a natural notion of cyclic descent set for permutations, and Rhoades introduced such a notion for SYT—but only for rectangular shapes. In this work we define cyclic extensions of descent sets in a general context and prove existence and essential uniqueness for SYT of almost all shapes. The proof applies nonnegativity properties of Postnikov’s toric Schur polynomials, providing a new interpretation of certain Gromov–Witten invariants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.