Abstract

Cutting force models are important for machining processes simulations. This paper presents measurement of cutting forces during C45 (1.0503) carbon steel machining using a coated carbide tool. Various cutting edge geometries and cutting conditions as well as various tool flank wear values were tested. The cutting force coefficients were computed from the experimental data. The results showed that the absolute value of the cutting force coefficients depended on the cutting edge geometry, cutting conditions and tool wear. Additionally, the relative increase in the cutting force coefficients during the tool lifetime was linear and independent of the cutting edge geometries and cutting conditions. The cutting force coefficient models with and without cross components were identified using the linear regression method. Comparison of both models is discussed in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call