Abstract

We define a new notion of cuspidality for representations of $\GL_n$ over a finite quotient $\Oh_k$ of the ring of integers $\Oh$ of a non-Archimedean local field $F$ using geometric and infinitesimal induction functors, which involve automorphism groups $G_\lambda$ of torsion $\Oh$\nobreakdash-modules. When $n$ is a prime, we show that this notion of cuspidality is equivalent to strong cuspidality, which arises in the construction of supercuspidal representations of $\GL_n(F)$. We show that strongly cuspidal representations share many features of cuspidal representations of finite general linear groups. In the function field case, we show that the construction of the representations of $\GL_n(\Oh_k)$ for $k\geq 2$ for all $n$ is equivalent to the construction of the representations of all the groups $G_\lambda$. A functional equation for zeta functions for representations of $\GL_n(\Oh_k)$ is established for representations which are not contained in an infinitesimally induced representation. All the cuspidal representations for $\GL_4(\Oh_2)$ are constructed. Not all these representations are strongly cuspidal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call