Abstract
In this note, we investigate the pinching problem for oriented compact submanifolds of dimension n with parallel normalized mean curvature vector in a space form Fn+p(c). We first prove a codimension reduction theorem for submanifolds under lower Ricci curvature bounds. Moreover, if the submanifolds have constant normalized scalar curvature R≥c, we obtain a classification theorem for submanifolds under lower Ricci curvature bounds. It should be emphasized that our Ricci pinching conditions are sharp for even n and p=2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.