Abstract

It was proved in Feng et al. (2015) that a cubic symmetric graph with a solvable automorphism group is either a Cayley graph or a 2-regular graph of type 22, that is, a graph with no automorphism of order 2 interchanging two adjacent vertices. In this paper an infinite family of non-Cayley cubic 2-regular graphs of type 22 with a solvable automorphism group is constructed, and the smallest graph has order 6174. This answers a question posed by Estélyi and Pisanski in 2016. Moreover, it includes a subfamily of graphs which are connected 2-regular covers of the Pappus graph with covering transformation group Zp3, and these graphs were missed in Oh (2009).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.