Abstract
Overlap functions, as one kind of special binary aggregation functions, have been continuously concerned and studied by many scholars and widely applied in classification, decision making, image processing, and fuzzy community detection problems. Meanwhile, the migrativity as a vital, and particularly, interesting property for binary aggregation functions, has been studied in the literature since it was proposed. This article continues to consider this research topic and mainly focuses on the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\alpha$</tex-math></inline-formula> -cross-migrativity for overlap functions. First, we introduce the concept of the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\alpha$</tex-math></inline-formula> -cross-migrativity for overlap functions and show some vital properties of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\alpha$</tex-math></inline-formula> -cross-migrative overlap functions. Second, we study the overlap functions that are <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\alpha$</tex-math></inline-formula> -cross-migrative with respect to the minimum overlap function <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$O_M$</tex-math></inline-formula> and obtain an equivalent characterization of them by the ordinal sum of overlap functions. Third, we prove that an overlap function is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\alpha$</tex-math></inline-formula> -cross-migrative with respect to the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$p$</tex-math></inline-formula> -product overlap function <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$O_p$</tex-math></inline-formula> only if <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$p$</tex-math></inline-formula> is equal to 1 and give an equivalent characterization of the overlap functions that satisfy the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\alpha$</tex-math></inline-formula> -cross-migrativity with respect to the 1-product overlap function <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$O_1$</tex-math></inline-formula> also by the ordinal sum of overlap functions. Finally, we extend the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\alpha$</tex-math></inline-formula> -cross-migrativity of overlap functions to the 0-overlap functions status and get two equivalent characterizations of the 0-overlap functions that are <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\alpha$</tex-math></inline-formula> -cross-migrative with respect to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$O_M$</tex-math></inline-formula> and an equivalent characterization of the 0-overlap functions that satisfy the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\alpha$</tex-math></inline-formula> -cross-migrativity with respect to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$O_1$</tex-math></inline-formula> , respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.