Abstract

Covert wireless communication ensures information security by hiding the existence of the information transmission itself. Available works mainly focused on the covert throughput study of one-hop wireless communications, while the performance limit of covert throughput in important two-way two-hop scenarios remains largely unknown. As the most significant contribution, this paper, for the first time, investigates such performance limit in a system where two sources wish to covertly exchange information through a relay against the detection of a warden, i.e., a malicious node that attempts to detect the existence of communication between the two sources. As the second contribution, this paper considers various scenarios regarding the warden’s prior knowledge about the relay, the sources/relay’s prior knowledge about the warden, as well as different relaying patterns, and then proposes a covertness strategy to resist the warden’s detection for each scenario. As the last contribution, we derive the scaling law result for the covert throughput of the system for each scenario, i.e., the maximum number of bits that the two sources can exchange subject to a constraint on the detection probability of the warden. The results in this paper indicate that the covert throughput of the concerned system follows the well-known square root scaling law, which is independent of the relaying patterns, detection schemes, covertness strategies, and prior knowledges of the sources/relay and warden.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.