Abstract

Abstract We find the number s k ⁢ ( p , Ω ) s_{k}(p,\Omega) of cuspidal automorphic representations of GSp ⁢ ( 4 , A Q ) \mathrm{GSp}(4,\mathbb{A}_{\mathbb{Q}}) with trivial central character such that the archimedean component is a holomorphic discrete series representation of weight k ≥ 3 k\geq 3 , and the non-archimedean component at 𝑝 is an Iwahori-spherical representation of type Ω and unramified otherwise. Using the automorphic Plancherel density theorem, we show how a limit version of our formula for s k ⁢ ( p , Ω ) s_{k}(p,\Omega) generalizes to the vector-valued case and a finite number of ramified places.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.