Abstract

When realized on computational devices with finite quantities of memory, feedforward artificial neural networks and the functions they compute cease being abstract mathematical objects and turn into executable programs generating concrete computations. To differentiate between feedforward artificial neural networks and their functions as abstract mathematical objects and the realizations of these networks and functions on finite memory devices, we introduce the categories of general and actual computabilities and show that there exist correspondences, i.e., bijections, between functions computable by trained feedforward artificial neural networks on finite memory automata and classes of primitive recursive functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.