Abstract

In this paper, we establish two sharp quantitative results for the direct and inverse time-harmonic acoustic wave scattering. The first one is concerned with the recovery of the support of an inhomogeneous medium, independent of its contents, by a single far-field measurement. For this challenging inverse scattering problem, we establish a sharp stability estimate of logarithmic type when the medium support is a polyhedral domain in $\mathbb{R}^n$, $n=2,3$. The second one is concerned with the stability for corner scattering. More precisely if an inhomogeneous scatterer, whose support has a corner, is probed by an incident plane-wave, we show that the energy of the scattered far-field possesses a positive lower bound depending only on the geometry of the corner and bounds on the refractive index of the medium there. This implies the impossibility of approximate invisibility cloaking by a device containing a corner and made of isotropic material. Our results sharply quantify the qualitative corner scattering results in the literature, and the corresponding proofs involve much more subtle analysis and technical arguments. As a significant byproduct of this study, we establish a quantitative Rellich's theorem that continues smallness of the wave field from the far-field up to the interior of the inhomogeneity. The result is of significant mathematical interest for its own sake and is surprisingly not yet known in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.