Abstract
The research of cyber security for Multi-access Edge Computing (MEC) has not yet received a great interest. Specifically, the attack detection issue is considered as a major concern since the MEC network, which handles attractive information, is prone to several internal and external network attacks. Recently, the Federated Learning (FL) and Generative Adversarial Network (GAN) have been used to detect and prevent attacks from targeting the wireless mobile networks. In this article, we present the state of the art of MEC attack detection and defense frameworks which incorporate FL and GAN algorithms. Moreover, we propose a new cyber defense framework based on a Federated Generative Adversarial Network (FedGAN) algorithm and non-cooperative game to improve over time the precision of attack detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.