Abstract

A p+-i-n+ self-cooled light-emitting diode with type-II band offset is numerically simulated in one-dimension to examine the underlying cooling/heating mechanisms. The Peltier effect is confirmed to be the dominant cooling mechanism under forward bias, even when the carriers are injected without an energy barrier. Meanwhile, Joule heating in the active layer is identified as the main heating mechanism for bandgaps below 0.52 eV under an ultra-low forward bias. In contrast to non-radiative recombination, electroluminescence itself is found to be a cooling mechanism, producing most photons above the bandgap of the active layer. However, this effect only becomes noticeable under an ultra-low bias in very small bandgap materials. While it is desirable to inject more carriers to leverage larger band offsets for a higher cooling power, Joule heating limits the maximum cooling power achievable. With small band offsets (<0.21 eV), a reverse bias instead of a forward bias may become the best cooling condition, where non-radiative generation processes are discovered to be the dominant cooling mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.