Abstract
It is well known that the-Walsh-Fourier expansion of a function from the block spaceBq([0,1]), 1<q≤∞, converges pointwise a. e. We prove that the same result is true for the expansion of a function fromBq in certain periodized smooth periodic non-stationary wavelet packets bases based on the Haar filters. We also consider wavelet packets based on the Shannon filters and show that the expansion of Lp-functions, 1<p<∞, converges in norm and pointwise almost everywhere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.