Abstract
The present paper aims at analyzing the existence and convergence of approximate solutions in shape optimization. Motivated by illustrative examples, an abstract setting of the underlying shape optimization problem is suggested, taking into account the so-called two norm discrepancy. A Ritz-Galerkin-type method is applied to solve the associated necessary condition. Existence and convergence of approximate solutions are proved, provided that the infinite dimensional shape problem admits a stable second order optimizer. The rate of convergence is confirmed by numerical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.