Abstract
We consider controller-stopper problems in which the controlled processes can have jumps. The global filtration is represented by the Brownian filtration, enlarged by the filtration generated by the jump process. We assume that there exists a conditional probability density function for the jump times and marks, given the filtration of the Brownian motion, and decompose the global controller-stopper problem into controller-stopper problems with respect to the Brownian filtration, which are determined by a backward induction. We apply our decomposition method to indifference pricing of American options under multiple default risk. The backward induction leads to a system of reflected backward stochastic differential equations (RBSDEs). We show that there exists a solution to this RBSDE system and that the solution provides a characterization of the value function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.