Abstract

In this paper, the use of continuous-time implementation in extended-range (ER) incremental sigma-delta analog-to-digital converters is analyzed in order to explore a possible solution to low-power multichannel applications. The operation principle, possible loop filter topologies, and critical issues are considered using a general approach. It is demonstrated that, in order to fully benefit from ER, careful attention has to be paid to the analog-digital transfer function mismatches. A third-order single-bit topology validates the theoretical analysis. Its performance is evaluated while the impact of key circuit nonidealities is quantified through behavioral-level simulations. It is shown that, by applying analog-digital mismatch compensation in the digital domain, it is possible to relax the amplifiers' finite gain-bandwidth product and finite dc gain requirements, thus allowing a power-conscious alternative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.