Abstract

In this work, we discuss a classification of [Formula: see text]-Freudenthal–Kantor triple systems defined by bilinear forms and give all examples of such triple systems. From these results, we may see a construction of some simple Lie algebras or superalgebras associated with their Freudenthal–Kantor triple systems. We also show that we can associate a complex structure into these ([Formula: see text]-Freudenthal–Kantor triple systems. Further, we introduce the concept of Dynkin diagrams associated to such [Formula: see text]-Freudenthal–Kantor triple systems and the corresponding Lie (super) algebra construction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.