Abstract

Two-dimensional optical orthogonal codes (2-D OOCs) are of current practical interest in fiber-optic code-division multiple-access networks as they enable optical communication at lower chip rate to overcome the drawbacks of nonlinear effects in large spreading sequences of one-dimensional codes. A 2-D OOC is said to be optimal if its cardinality is the largest possible. In this paper, we develop some constructions for optimal 2-D OOCs using combinatorial design theory. As an application, these constructions are used to construct an infinite family of new optimal 2-D OOCs with auto-correlation 1 and cross-correlation 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.