Abstract
Orthognathic surgery (OGS) is frequently used to correct facial deformities associated with skeletal malocclusion and facial asymmetry. An accurate evaluation of facial symmetry is a critical for precise surgical planning and the execution of OGS. However, no facial symmetry scoring standard is available. Typically, orthodontists or physicians simply judge facial symmetry. Therefore, maintaining accuracy is difficult. We propose a convolutional neural network with a transfer learning approach for facial symmetry assessment based on 3-dimensional (3D) features to assist physicians in enhancing medical treatments. We trained a new model to score facial symmetry using transfer learning. Cone-beam computed tomography scans in 3D were transformed into contour maps that preserved 3D characteristics. We used various data preprocessing and amplification methods to determine the optimal results. The original data were enlarged by 100 times. We compared the quality of the four models in our experiment, and the neural network architecture was used in the analysis to import the pretraining model. We also increased the number of layers, and the classification layer was fully connected. We input random deformation data during training and dropout to prevent the model from overfitting. In our experimental results, the Xception model and the constant data amplification approach achieved an accuracy rate of 90%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.