Abstract
In this work, we develop a novel approximation strategy for building almost periodic sequences in the theory of almost periodic functions. Here, we create a different perspective for the argument of Dirichlet in the theory of numbers and design an integer approximation strategy in this regard. The idea behind the strategy comes from Kronecker's theorem and it is proven that for given an almost periodic function, it is possible to design its corresponding almost periodic sequence. Moreover, we provide two population models in both continuous and discrete cases where almost periodic sequence solutions are designed under suitable circumstances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.