Abstract

A class of different schemes for the numerical solving of semilinear singularly--perturbed reaction--diffusion boundary--value problems was constructed. The stability of the difference schemes was proved, and the existence and uniqueness of a numerical solution were shown. After that, the uniform convergence with respect to a perturbation parameter $\varepsilon$ on a modified Shishkin mesh of order 2 has been proven. For such a discrete solution, a global solution based on a linear spline was constructed, also the error of this solution is in expected boundaries. Numerical experiments at the end of the paper, confirm the theoretical results. The global solutions based on a natural cubic spline, and the experiments with Liseikin, Shishkin and modified Bakhvalov meshes are included in the numerical experiments as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call