Abstract

We consider the fast solution of a class of large, piecewise smooth minimization problems. For lack of smoothness, usual Newton multigrid methods cannot be applied. We propose a new approach based on a combination of convex minization with constrained Newton linearization. No regularization is involved. We show global convergence of the resulting monotone multigrid methods and give polylogarithmic upper bounds for the asymptotic convergence rates. Efficiency is illustrated by numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.