Abstract

In this paper, we investigate the problem of leaderless consensus control for the multiagent systems whose nonlinear dynamics satisfying incremental quadratic constraints. A distributed dynamic consensus protocol, decided by communication among neighboring agents, is presented to render nonlinear agent consensus with appropriate coupling weights. Next, an observer-based distributed protocol is considered to ensure consensus of nonlinear system without knowing full state information. Further, extensions to consensus strategies with nonlinear dynamics for the leader-following fashion are also addressed. By comparison to the traditional nonlinear consensus control methodologies, the proposed approach generalizes the Lipschitz nonlinearity as well as the combined nonlinearity of one-sided Lipschitz condition and quadratic inner-boundness condition towards a more generalized type of nonlinearity, which shows us a less conservative result in the Lyapunov proof. Finally, the numerical simulations for six agents are illustrated to show the feasibility and performance of the proposed control protocol with or without the presence of the observer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call