Abstract
In the paper we study properties of solutions to stochastic differential inclusions and set-valued stochastic differential equations with respect to semimartingale integrators. We present new connections between their solutions. In particular, we show that attainable sets of solutions to stochastic inclusions are subsets of values of multivalued solutions of certain set-valued stochastic equations. We also show that every solution to stochastic inclusion is a continuous selection of a multivalued solution of an associated set-valued stochastic equation. The results obtained in the paper generalize results dealing with this topic known both in deterministic and stochastic cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.