Abstract
One of the most important problems in approximation theory in mathematical analysis is the determination of sequences of polynomials that converge to functions and have the same geometric properties. This type of approximation is called the shape-preserving approximation. These types of problems are usually handled depending on the convexity of the functions, the degree of smoothness depending on the order of differentiability, or whether it satisfies a functional equation. The problem addressed in this paper belongs to the third class. A quadratic bivariate algebraic equation denotes geometrically some well-known shapes such as circles, ellipses, hyperbolas and parabolas. Such equations are known as conic equations. In this study, it is investigated whether conic equations transform into a conic equation under bivariate Bernstein polynomials, and if so, which conic equation it transforms into.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.