Abstract
Conformally recurrent pseudo-Riemannian manifolds of dimension [Formula: see text] are investigated. The Weyl tensor is represented as a Kulkarni–Nomizu product. If the square of the Weyl tensor is non-zero, a covariantly constant symmetric tensor is constructed, that is quadratic in the Weyl tensor. Then, by Grycak’s theorem, the explicit expression of the traceless part of the Ricci tensor is obtained, up to a scalar function. The Ricci tensor has at most two distinct eigenvalues, and the recurrence vector is an eigenvector. Lorentzian conformally recurrent manifolds are then considered. If the square of the Weyl tensor is non-zero, the manifold is decomposable. A null recurrence vector makes the Weyl tensor of algebraic type IId or higher in the Bel–Debever–Ortaggio classification, while a time-like recurrence vector makes the Weyl tensor purely electric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.