Abstract
Following a recent paper by Baryshnikov and Zharnitsky, we consider outer billiards in the plane possessing invariant curves consisting of periodic orbits. We prove the existence and abundance of such tables using tools from sub-Riemannian geometry. We also prove that the set of 3-periodic outer billiard orbits has empty interior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.