Abstract

Consider the problem of obtaining a confidence interval for some function g(θ) of an unknown parameter θ, for which a (1-α)-confidence interval is given. If g(θ) is one-to-one the solution is immediate. However, if g is not one-to-one the problem is more complex and depends on the structure of g. In this note the situation where g is a nonmonotone convex function is considered. Based on some inequality, a confidence interval for g(θ) with confidence level at least 1-α is obtained from the given (1-α) confidence interval on θ. Such a result is then applied to the n(μ, σ2) distribution with σ known. It is shown that the coverage probability of the resulting confidence interval, while being greater than 1-α, has in addition an upper bound which does not exceed Θ(3z1−α/2)-α/2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.