Abstract

An explicit two-level in time and spatially symmetric finite-difference scheme approximating the 1D quasi-gasdynamic system of equations is studied. The scheme is linearized about a constant solution, and new necessary and sufficient conditions for the L2-dissipativity of solutions to the Cauchy problem are derived, including, for the first time, the case of a nonzero background velocity and depending on the Mach number. It is shown that the condition on the Courant number can be made independent of the Mach number. The results provide a substantial development of the well-known stability analysis of the linearized Lax–Wendroff scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.