Abstract
In a nutshell, we intend to extend Schoenberg's classical theorem connecting conditionally positive semidefinite functions $F\colon \mathbb{R}^n \to \mathbb{C}$, $n \in \mathbb{N}$, and their positive semidefinite exponentials $\exp(tF)$, $t > 0$, to the case of matrix-valued functions $F \colon \mathbb{R}^n \to \mathbb{C}^{m \times m}$, $m \in \mathbb{N}$. Moreover, we study the closely associated property that $\exp(t F(- i \nabla))$, $t>0$, is positivity preserving and its failure to extend directly in the matrix-valued context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Studia Mathematica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.