Abstract

Si des contraintes d’independance conditionnelle definissent une famille de distributions positives qui est log-convexe, alors cette famille doit etre un modele de Markov sur un graphe non-dirige. Ceci est demontre pour les distributions sur le produits d’ensembles finis et pour les distributions gaussiennes regulieres. Par consequent, l’assertion connue comme le theoreme de factorisation de Brook, le theoreme de Hammersley–Clifford ou l’equivalence de Gibbs–Markov est obtenue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.