Abstract
<abstract><p>It is shown that the presence of a non-zero concurrent vector field on a Riemannian manifold poses an obstruction to its topology as well as certain aspects of its geometry. It is shown that on a compact Riemannian manifold, there does not exist a non-zero concurrent vector field. Also, it is shown that a Riemannian manifold of non-zero constant scalar curvature does not admit a non-zero concurrent vector field. It is also shown that a non-zero concurrent vector field annihilates de-Rham Laplace operator. Finally, we find a characterization of a Euclidean space using a non-zero concurrent vector field on a complete and connected Riemannian manifold.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.