Abstract

Pairs of antiparallely oriented consensus tRNAs with complementary anticodons show surprisingly small numbers of mispairings within the 17-bp- long anticodon stem and loop region. Even smaller such complementary distances are shown by illegitimately complementary anticodons, i.e. those with allowed pairing between G and U bases. Accordingly, we suppose that transfer RNAs have emerged concertedly as complementary strands of primordial double helix-like RNA molecules. Replication of such molecules with illegitimately complementary anticodons might generate new synonymous codons for the same pair of amino acids. Logically, the idea of tRNA concerted origin dictates very ancient establishment of direct links between anticodons and the type of amino acids with which pre-tRNAs were to be charged. More specifically, anticodons (first of all, the 2nd base) could selectively target 'their' amino acids, reaction of acylating itself being performed by another non-specific site of pre-tRNA or even by another ribozyme. In all, the above findings and speculations are consistent to the hypercyclic concept (Eigen and Schuster, 1979), and throw new light on the genetic code origin and associated problems. Also favoring this idea are data on complementary codon usage patterns in different genomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call