Abstract
AbstractThe permeable materials known as metal–organic frameworks (MOFs) have a large porosity volume, excellent chemical stability, and a unique structure that results from the potent interactions between metal ions and organic ligands. Work on the synthesis, architectures, and properties of various MOFs reveals their utility in a variety of applications, including energy storage devices with suitable electrode materials, gas storage, heterogeneous catalysis, and chemical assessment. A topological index, which is a numerical invariant, predicts the physicochemical properties of chemical entities based on the underlying molecular graph or framework. In this article, we consider two different zinc-based MOFs, namely zinc oxide and zinc silicate MOFs. We compute 14 neighbourhood degree sum-based topological indices for these frameworks, and the numerical and graphical representations of all the aforementioned 14 indices are made.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.