Abstract

Compressed sensing is a celebrated framework in signal processing and has many practical applications. One of the challenging problems in compressed sensing is to construct deterministic matrices having the restricted isometry property (RIP). So far, there are only a few publications providing deterministic RIP matrices beating the square-root bottleneck on the sparsity level. In this paper, we investigate RIP of certain matrices defined by higher power residues modulo primes. Moreover, we prove that the widely-believed generalized Paley graph conjecture implies that these matrices have RIP breaking the square-root bottleneck. Also the compression ratio realized by these RIP matrices is significantly larger than 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.