Abstract

In this paper, we show that any polynomial of zeta or L-functions with some conditions has infinitely many complex zeros off the critical line. This general result has abundant applications. By using the main result, we prove that the zeta-functions associated to symmetric matrices treated by Ibukiyama and Saito, certain spectral zeta-functions and the Euler–Zagier multiple zeta-functions have infinitely many complex zeros off the critical line. Moreover, we show that the Lindelof hypothesis for the Riemann zeta-function is equivalent to the Lindelof hypothesis for zeta-functions mentioned above despite of the existence of the zeros off the critical line. Next we prove that the Barnes multiple zeta-functions associated to rational or transcendental parameters have infinitely many zeros off the critical line. By using this fact, we show that the Shintani multiple zeta-functions have infinitely many complex zeros under some conditions. As corollaries, we show that the Mordell multiple zeta-functions, the Euler–Zagier–Hurwitz type of multiple zeta-functions and the Witten multiple zeta-functions have infinitely many complex zeros off the critical line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call